Super-stealth dicing of transparent solids with nanometric precision

0
34


  • Adams, C. M. & Hardway, G. A. Fundamentals of laser beam machining and drilling. IEEE Trans. Ind. Gen. Appl. 2, 90–96 (1965).

    Article 

    Google Scholar
     

  • Kerse, C. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Park, M., Gu, Y., Mao, X., Grigoropoulos, C. P. & Zorba, V. Mechanisms of ultrafast GHz burst fs laser ablation. Sci. Adv. 9, eadf6397 (2023).

    Article 

    Google Scholar
     

  • Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 7, 897–901 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Tokel, O. et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nat. Photonics 11, 639–645 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kumagai, M. et al. Advanced dicing technology for semiconductor wafer—stealth dicing. IEEE Trans. Semicond. Manuf. 20, 259–265 (2007).

    Article 

    Google Scholar
     

  • Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5, e16133 (2016).

    Article 

    Google Scholar
     

  • Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2012).

  • Indebetouw, G. Nondiffracting optical fields: some remarks on their analysis and synthesis. J. Opt. Soc. Am. A 6, 150–152 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Durnin, J., Miceli, J. J. & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Bialynicki-Birula, I. & Bialynicka-Birula, Z. Heisenberg uncertainty relations for photons. Phys. Rev. A 86, 022118 (2012).

    Article 
    ADS 

    Google Scholar
     

  • McCutchen, C. W. Generalized aperture and the three-dimensional diffraction image. J. Opt. Soc. Am. 54, 240–244 (1964).

    Article 
    ADS 

    Google Scholar
     

  • Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Li, Z.-Z. et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci. Appl. 9, 41 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Yan, Z., Gao, J., Beresna, M. & Zhang, J. Near-field mediated 40 nm in-volume glass fabrication by femtosecond laser. Adv. Opt. Mater. 10, 2101676 (2022).

    Article 

    Google Scholar
     

  • Lei, Y. et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement. Optica 8, 1365–1371 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Plech, A., Leiderer, P. & Boneberg, J. Femtosecond laser near field ablation. Laser Photonics Rev. 3, 435–451 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Wu, H. et al. Photonic nanolaser with extreme optical field confinement. Phys. Rev. Lett. 129, 013902 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, H., Lin, W. & Hong, M. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light Sci. Appl. 10, 162 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bhuyan, M. K. et al. Ultrafast laser nanostructuring in bulk silica, a ‘slow’ microexplosion. Optica 4, 951–958 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, L., Wang, A.-D., Li, B., Cui, T.-H. & Lu, Y.-F. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci. Appl. 7, 17134 (2018).

    Article 

    Google Scholar
     

  • Chanal, M. et al. Crossing the threshold of ultrafast laser writing in bulk silicon. Nat. Commun. 8, 773 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wang, A. et al. Burst mode enabled ultrafast laser inscription inside gallium arsenide. Int. J. Extrem. Manuf. 4, 045001 (2022).

  • Götte, N. et al. Temporal Airy pulses for controlled high aspect ratio nanomachining of dielectrics. Optica 3, 389–395 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X., Clady, R., Grojo, R., Utéza, O. & Sanner, N. Engraving depth-controlled nanohole arrays on fused silica by direct short-pulse laser ablation. Adv. Mater. Interfaces 10, 2202189 (2023).

  • Juodkazis, S. et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. Phys. Rev. Lett. 96, 166101 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Bellouard, Y. et al. Stress-state manipulation in fused silica via femtosecond laser irradiation. Optica 3, 1285–1293 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Tan, D., Zhang, B. & Qiu, J. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications. Laser Photonics Rev. 15, 2000455 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Flamm, D. et al. Structured light for ultrafast laser micro- and nanoprocessing. Opt. Eng. 60, 025105 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Salter, P. S. & Booth, M. J. Adaptive optics in laser processing. Light Sci. Appl. 8, 110 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Meyer, R. et al. Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams. Opt. Lett. 42, 4307–4310 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Velpula, P. K. et al. Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring. Laser Photonics Rev. 10, 230–244 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Mahmoud Aghdami, K., Rahnama, A., Ertorer, E. & Herman, P. R. Laser nano-filament explosion for enabling open-grating sensing in optical fibre. Nat. Commun. 12, 6344 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Motoyoshi, M. Through-silicon via (TSV). Proc. IEEE 97, 43–48 (2009).

    Article 

    Google Scholar
     

  • Sugioka, K. & Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kawata, S., Sun, H.-B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Z., Liu, H., Ji, L., Lin, W. & Hong, M. Realization of ~10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett. 20, 4947–4952 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Rapp, L. et al. High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams. Sci. Rep. 6, 34286 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Li, Z., Allegre, O. & Li, L. Realising high aspect ratio 10 nm feature size in laser materials processing in air at 800 nm wavelength in the far-field by creating a high purity longitudinal light field at focus. Light Sci. Appl. 11, 339 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Meyer, R. et al. Extremely high-aspect-ratio ultrafast Bessel beam generation and stealth dicing of multi-millimeter thick glass. Appl. Phys. Lett. 114, 201105 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bellouard, Y., Said, A., Dugan, M. & Bado, P. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 2120–2129 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Ródenas, A. et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photonics 13, 105–109 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Meyer, R., Giust, R., Jacquot, M., Dudley, J. M. & Courvoisier, F. Submicron-quality cleaving of glass with elliptical ultrafast Bessel beams. Appl. Phys. Lett. 111, 231108 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Stoian, R. Volume photoinscription of glasses: three-dimensional micro- and nanostructuring with ultrashort laser pulses. Appl. Phys. A 126, 438 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lancry, M. et al. Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. Laser Photonics Rev. 7, 953–962 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Q., Almeida, V. R., Panepucci, R. R. & Lipson, M. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 29, 1626–1628 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Hentschel, M. et al. Dielectric Mie voids: confining light in air. Light Sci. Appl. 12, 3 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, J. et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nat. Commun. 13, 3900 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liang, Z., Wu, J., Cui, Y., Sun, H. & Ning, C.-Z. Self-optimized single-nanowire photoluminescence thermometry. Light Sci. Appl. 12, 36 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Sander, T. H. et al. Magnetoencephalography with a chip-scale atomic magnetometer. Biomed. Opt. Express 3, 981–990 (2012).

    Article 

    Google Scholar
     

  • Delgoffe, A., Nazir, S., Hakobyan, S., Hönninger, C. & Bellouard, Y. All-glass miniature GHz repetition rate femtosecond laser cavity. Optica 10, 1269–1279 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Rahim, K. & Mian, A. A review on laser processing in electronic and MEMS packaging. J. Electron. Packag. 139, 030801 (2017).

    Article 

    Google Scholar
     

  • Sugioka, K. et al. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip 14, 3447–3458 (2014).

    Article 

    Google Scholar
     

  • Chambonneau, M. et al. In-volume laser direct writing of silicon—challenges and opportunities. Laser Photonics Rev. 15, 2100140 (2021).

  • Li, L., Kong, W. & Chen, F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances. Adv. Photonics 4, 024002 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Buschlinger, R., Nolte, S. & Peschel, U. Self-organized pattern formation in laser-induced multiphoton ionization. Phys. Rev. B 89, 184306 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Déziel, J.-L., Dubé, L. J. & Varin, C. Dynamical rate equation model for femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 104, 045201 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Garcia-Lechuga, M. et al. Simultaneous time–space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses. Phys. Rev. B 95, 214114 (2017).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here