Kilowatt-average-power single-mode laser light transmission over kilometre-scale hollow-core fibre

0
22
  • Zaeh, M. F., Moesl, J., Musiol, J. & Oefele, F. Material processing with remote technology revolution or evolution? Phys. Procedia 5, 19–33 (2010).

    Article
    ADS

    Google Scholar

  • Beyer, E., Mahrle, A., Lütke, M., Standfuss, J. & Brückner, F. Innovations in high power fiber laser applications. In Proc. SPIE 8237, Fiber Lasers IX: Technology, Systems, and Applications (eds Honea, E. C. & Hendow, S. T.) 823717 (SPIE, 2012).

  • Zervas, M. N. & Codemard, C. A. High power fiber lasers: a review. IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).

    Article
    ADS

    Google Scholar

  • Kraetzsch, M. et al. Laser beam welding with high-frequency beam oscillation: welding of dissimilar materials with brilliant fiber lasers. In International Congress on Applications of Lasers & Electro-Optics 169–178 (Laser Institute of America, 2011).

  • Schmitt, F. D. et al. Laser beam micro welding with high brilliant fiber lasers. J. Laser Micro/Nanoeng. 5, 197–203 (2010).

    Article

    Google Scholar

  • Kratky, A., Schuöcker, D. & Liedl, G. Processing with kW fibre lasers: advantages and limits. In Proc. SPIE 7131, XVII International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers (eds Vilar, R. et al.) 71311X (SPIE, 2009).

  • Stiles, E. New developments in IPG fiber laser technology. In 5th International Workshop on Fiber Lasers 4–6 (Fraunhofer IWS, 2009).

  • Agrawal, G. P. Nonlinear Fiber Optics 3rd edn (Academic, 2001).

  • Dawson, J. W. et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt. Express 16, 13240–13266 (2008).

    Article
    ADS

    Google Scholar

  • Jauregui, C., Limpert, J. & Tünnermann, A. High-power fibre lasers. Nat. Photonics 7, 861–867 (2013).

    Article
    ADS

    Google Scholar

  • Knight, J. C., Birks, T. A., Cregan, R. F., Russell, P. S. J. & Sandro, J.-P. D. Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998).

    Article
    ADS

    Google Scholar

  • Liu, C.-H. et al. Effectively single-mode chirally-coupled core fiber. In Advanced Solid-State Photonics ME2 (Optical Society of America, 2007).

  • Limpert, J. et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation. Light Sci. Appl. 1, e8 (2012).

    Article

    Google Scholar

  • Röhrer, C., Codemard, C. A., Kleem, G., Graf, T. & Ahmed, M. A. Preserving nearly diffraction-limited beam quality over several hundred meters of transmission through highly multimode fibers. J. Lightwave Technol. 37, 4260–4267 (2019).

    Article
    ADS

    Google Scholar

  • Shima, K. et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing. In Proc. SPIE 10512, Fiber Lasers XV: Technology and Systems (eds Hartl, I. & Carter, A. L.) 105120C (SPIE, 2018).

  • Matsui, T. et al. Effective area enlarged photonic crystal fiber with quasi-uniform air-hole structure for high power transmission. IEICE Trans. Commun. E103.B, 415–421 (2020).

    Article
    ADS

    Google Scholar

  • Okuda, T., Fujiya, Y., Goya, S. & Inoue, A. Beam transmission technology by photonic crystal fiber to realizes high-precision and high-efficiency laser processing technology. Mitsubishi Heavy Ind. Tech. Rev. 57, 1–5 (2020).

  • Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Article

    Google Scholar

  • Wang, Y. Y., Wheeler, N. V., Couny, F., Roberts, P. J. & Benabid, F. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett. 36, 669–671 (2011).

    Article
    ADS

    Google Scholar

  • Belardi, W. & Knight, J. C. Hollow antiresonant fibers with reduced attenuation. Opt. Lett. 39, 1853–1856 (2014).

    Article
    ADS

    Google Scholar

  • Poletti, F. Nested antiresonant nodeless hollow core fiber. Opt. Express 22, 23807–23828 (2014).

    Article
    ADS

    Google Scholar

  • Debord, B. et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers. Optica 4, 209–217 (2017).

    Article
    ADS

    Google Scholar

  • Gao, S.-f et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss. Nat. Commun. 9, 2828 (2018).

    Article
    ADS

    Google Scholar

  • Sakr, H. et al. Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm. Nat. Commun. 11, 6030 (2020).

    Article
    ADS

    Google Scholar

  • Gao, S.-f, Wang, Y.-y, Ding, W., Hong, Y.-f & Wang, P. Conquering the Rayleigh scattering limit of silica glass fiber at visible wavelengths with a hollow-core fiber approach. Laser Photon. Rev. 14, 1900241 (2020).

    Article
    ADS

    Google Scholar

  • Jasion, G. T. et al. Hollow core NANF with 0.28 dB/km attenuation in the C and L bands. In Optical Fiber Communication Conference Postdeadline Papers 2020 paper Th4B.4 (Optical Society of America, 2020).

  • Sakr, H. et al. Hollow core NANFs with five nested tubes and record low loss at 850, 1060, 1300 and 1625nm. In Optical Fiber Communication Conference (OFC) 2021 (eds Dong, P. et al.) paper F3A.4 (Optical Society of America, 2021).

  • Debord, B. et al. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining. Opt. Express 22, 10735–10746 (2014).

    Article
    ADS

    Google Scholar

  • Michieletto, M. et al. Hollow-core fibers for high power pulse delivery. Opt. Express 24, 7103–7119 (2016).

    Article
    ADS

    Google Scholar

  • Hädrich, S. et al. Scalability of components for kW-level average power few-cycle lasers. Appl. Opt. 55, 1636–1640 (2016).

    Article
    ADS

    Google Scholar

  • Zhu, X. et al. Delivery of CW laser power up to 300 watts at 1080 nm by an uncooled low-loss anti-resonant hollow-core fiber. Opt. Express 29, 1492–1501 (2021).

    Article
    ADS

    Google Scholar

  • Palma-Vega, G. et al. High average power transmission through hollow-core fibers. In Laser Congress 2018 (ASSL) paper ATh1A.7 (Optical Society of America, 2018).

  • Jasion, G. T. et al. Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization. Opt. Express 27, 20567–20582 (2019).

    Article
    ADS

    Google Scholar

  • Nespola, A. et al. Ultra-long-haul WDM transmission in a reduced inter-modal interference NANF hollow-core fiber. In Optical Fiber Communication Conference (OFC) 2021 (eds. Dong, P. et al.) paper F3B.5 (Optical Society of America, 2021).

  • Rikimi, S. et al. Pressure in as-drawn hollow core fibers. In OSA Advanced Photonics Congress (AP) 2020 (eds Caspani, L. et al.) paper SoW1H.4 (Optical Society of America, 2020).

  • Abt, F., Heß, A. & Dausinger, F. Focusing of high power single mode laser beams. In International Congress on Applications of Lasers & Electro-Optics 202 (Laser Institute of America, 2007).

  • Fokoua, E. N., Slavik, R., Richardson, D. J. & Poletti, F. Limits of coupling efficiency into hollow-core antiresonant fibers. In Conference on Lasers and Electro-Optics (eds Kang, J. et al.) paper STu1Q.4 (Optical Society of America, 2021).

  • Zervas, M. N. Bright future for fibre lasers? Laser Systems Europe https://www.lasersystemseurope.com/analysis-opinion/bright-future-fibre-lasers (2019).

  • Hilton, P. A. & Khan, A. Underwater cutting using a 1 μm laser source. J. Laser Appl. 27, 032013 (2015).

    Article
    ADS

    Google Scholar

  • Batarseh, S., Gahan, B. C., Graves, R. M. & Parker, R. A. Well perforation using high-power lasers. In SPE Annual Technical Conference and Exhibition SPE-84418-MS (Society of Petroleum Engineers, 2003).

  • Zediker, M. High power fiber lasers in geothermal, oil and gas. In Proc. SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications (Ed. Ramachandran, S.) 89610D (SPIE, 2014).

  • Benabid, F., Knight, J. C. & Russell, P. S. J. Particle levitation and guidance in hollow-core photonic crystal fiber. Opt. Express 10, 1195–1203 (2002).

    Article
    ADS

    Google Scholar

  • Bykov, D. S., Schmidt, O. A., Euser, T. G. & Russell, P. S. J. Flying particle sensors in hollow-core photonic crystal fibre. Nat. Photonics 9, 461–465 (2015).

    Article
    ADS

    Google Scholar

  • Ashkin, A. The pressure of laser light. Sci. Am. 226, 62–71 (1972).

    Article

    Google Scholar

  • Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article
    ADS
    MathSciNet

    Google Scholar

  • Mousavi, S. A. et al. Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers. Opt. Express 26, 8866–8882 (2018).

    Article
    ADS

    Google Scholar

  • Luan, J., Russell, P. S. J. & Novoa, D. Efficient self-compression of ultrashort near-UV pulses in air-filled hollow-core photonic crystal fibers. Opt. Express 29, 13787–13793 (2021).

    Article
    ADS

    Google Scholar

  • Marcuse, D. Derivation of Coupled Power Equations. Bell Syst. Tech. J. 51, 229–237 (1972).

    Article

    Google Scholar

  • Goodman, J. W. Statistical Optics (Wiley, 2000).

  • Mussot, A. et al. Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. Opt. Express 12, 2838–2843 (2004).

    Article
    ADS

    Google Scholar

  • Cavalcanti, S. B., Agrawal, G. P. & Yu, M. Noise amplification in dispersive nonlinear media. Phys. Rev. A 51, 4086–4092 (1995).

    Article
    ADS

    Google Scholar

  • Frosz, M. H., Bang, O. & Bjarklev, A. Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation. Opt. Express 14, 9391–9407 (2006).

    Article
    ADS

    Google Scholar

Source link

LEAVE A REPLY

Please enter your comment!
Please enter your name here