In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon

0
72


  • Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Priolo, F., Gregorkiewicz, T., Galli, M. & Krauss, T. F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotech. 9, 19–32 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lim, A. E.-J. et al. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).

    Article 

    Google Scholar
     

  • Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photon. 4, 495–497 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Emma, P. G. & Kursun, E. Is 3D chip technology the next growth engine for performance improvement? IBM J. Res. Dev. 52, 541–552 (2008).

    Article 

    Google Scholar
     

  • Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better computing. Nat. Nanotech. 10, 191–194 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Beresna, M., Gecevičius, M. & Kazansky, P. G. Ultrafast laser direct writing and nanostructuring in transparent materials. Adv. Opt. Photon. 6, 293–339 (2014).

    Article 

    Google Scholar
     

  • Sherwood-Droz, N. & Lipson, M. Scalable 3D dense integration of photonics on bulk silicon. Opt. Express. 19, 17758–17765 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Nejadmalayeri, A. H., Herman, P. R., Burghoff, J., Will, M., Nolte, S. & Tünnermann, A. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. Opt. Lett. 30, 964–966 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Pavlov, I., Dülgergil, E., Ilbey, E. & Ilday, F. Ö. Conference on Lasers and Electro-Optics 2012, CTu2M.5 (Optical Society, San Jose, CA, USA, 2012).

  • Pavlov, I., Dülgergil, E., Ilbey, E. & Ilday, F. Ö. Diffraction-limited, 10-W, 5-ns, 100-kHz, all-fiber laser at 1.55 μm. Opt. Lett. 39, 2695–2698 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photon. 7, 897–901 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Arecchi, F. T., Boccaletti, S. & Ramazza, P. L. Pattern formation and competition in nonlinear optics. Phys. Rep. 318, 1–83 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Kerse, C. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ilday, S. et al. Multiscale self-assembly of silicon quantum dots into an anisotropic three-dimensional random network. Nano Lett. 16, 1942–1948 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Penrose, L. S. & Penrose, R. Impossible objects: a special type of visual illusion. Br. J. Psychol. 49, 31–33 (1958).

    Article 

    Google Scholar
     

  • Bekenstein, R., Schley, R., Mutzafi, M., Rotschild, C. & Segev, M. Optical simulations of gravitational effects in the Newton–Schrodinger system. Nat. Phys. 11, 872–878 (2015).

    Article 

    Google Scholar
     

  • Brodeur, A. et al. Moving focus in the propagation of ultrashort laser pulses in air. Opt. Lett. 22, 304–306 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Yang, W., Kazansky, P. G. & Svirko, Y. P. Non-reciprocal ultrafast laser writing. Nat. Photon. 2, 99–104 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article 

    Google Scholar
     

  • Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotech. 10, 308–312 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Larouche, S., Tsai, Y.-J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Wu, C. et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun. 5, 3892 (2014).


    Google Scholar
     

  • Li, X. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun. 6, 6984 (2015).

    Article 

    Google Scholar
     

  • Dang, B., Bakir, M. S., Sekar, D. C., King, C. R. Jr & Meindl, J. D. Integrated microfluidic cooling and interconnects for 2D and 3D chips. IEEE Trans. Adv. Pack. 33, 79–87 (2010).

    Article 

    Google Scholar
     

  • Ball, P. Feeling the heat. Nature 492, 174–176 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Motoyoshi, M. Through-silicon via (TSV). Proc. IEEE 97, 43–48 (2009).

    Article 

    Google Scholar
     



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here