Laser Cladding and Hard Facing for the Oil and Gas Industry

0
105


Laser cladding and hard laser facing are welding techniques that provide a protective surface coating on metal parts. Also called laser metal deposition (LMD), laser cladding utilizes a focused laser beam to generate heat, and clad material is simultaneously fed into the resulting melt pool on the targeted surface area of a metal component. The result is a metallurgically bonded protective layer that enhances a component’s resistance to wear and corrosion associated with environmental and chemical factors. This is done with low dilutions and small heat-affected zones.

Such protection is particularly essential for components across the oil and gas industry. Part exposure to salt water, chemicals, oxidation, and temperature extremes takes a toll on metal components and can lead to downtime and productivity losses due to leakage or part failure. Learn more about the applications for laser cladding in this industry, and how it can help safeguard your equipment from corrosive service conditions.

Laser Cladding Applications in the Oil and Gas Industry

The oil, gas, and petrochemical sectors require parts that can withstand rugged applications in harsh environments. Applications for laser cladding in this industry include:

  • Bearings, bearing bushes, and bearing journals
  • Cutting and drilling components and tools
  • Gate and ball seats and valves
  • Heat exchangers
  • Hydraulic cylinders and plungers
  • Piston rods
  • Pump components
  • Risers
  • Rotors
  • Seals and seal seats
  • Tanks

Why Laser Cladding?

Due to corrosion problems in the oil and gas industry, its equipment components benefit greatly from a protective coating. Compared to standard additive methods, laser cladding provides a very low dilution corrosion- and erosion-resistant layer that extends part life and improves operational reliability and performance. Using lasers allows for greater precision and lower heat input that minimizes dilution, and distortion and enhances the properties of the metal substrate. As an added advantage, the process yields very thin weld overlays enabling part designers the choice to use generic base metal alloys for their parts.

All these advantages generate time and cost savings, as well. Covering a more affordable substrate with a thin, specialized surface coating can reduce material expenditures. Coated parts better withstand chemical exposure and mechanism wear, which prevents costly downtime and saves on maintenance and repairs. Offering shorter production times than plasma transferred arc (PTA) welding and other traditional techniques, laser cladding ultimately boosts productivity.

Titanova Laser Cladding

For minimal dilution, Titanova, Inc. uses a laser cladding method capable of welding a very smooth and thin single-pass metal layer overtop of a substrate at high rates of deposition. Stainless and tool steels, superalloys, chrome, cobalt, and nickel alloys are just some of the optimal metals for this process. Our technique allows us to successfully modify the surface metal’s chemistry without creating much weld distortion or a large heat-affected zone. With laser cladding, we can generate functional, cost-effective, and customizable components with enhanced resistance to wear, corrosion, oxidation, and high-temperature fatigue.

Founded in 2008, Titanova strives to provide products and services of the highest quality that meet or exceed customers’ expectations for 100% customer satisfaction. As a full-service ISO 9001:2015-certified laser job shop and certified member of ASME, ASM, AWS, and NTMA, we are committed to continual improvement, offering innovative laser processing solutions and supplying the thinnest and purest clads available in today’s weld overlay market.

For more information on our laser cladding services and how they can benefit your operation, contact us today.




Source link

LEAVE A REPLY

Please enter your comment!
Please enter your name here