Shape-induced force fields in optical trapping

0
141


  • Ashkin, A., Dziedzic, J., Bjorkholm, J. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS 

    Google Scholar
     

  • Block, S. M., Goldstein, L. S. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

    ADS 

    Google Scholar
     

  • Glückstad, J. Optical manipulation: sculpting the object. Nature Photon. 5, 7–8 (2010).

    ADS 

    Google Scholar
     

  • Simpson, S. H. & Hanna, S. Stability analysis and thermal motion of optically trapped nanowires. Nanotechnology 23, 205502 (2012).

    ADS 

    Google Scholar
     

  • Galajda, P. & Ormos, P. Rotors produced and driven in laser tweezers with reversed direction of rotation. Appl. Phys. Lett. 80, 4653–4655 (2002).

    ADS 

    Google Scholar
     

  • La Porta, A. & Wang, M. D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 92, 190801 (2004).

    ADS 

    Google Scholar
     

  • Jannasch, A., Demirörs, A. F., van Oostrum, P. D., van Blaaderen, A. & Schäffer, E. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nature Photon. 6, 469–473 (2012).

    ADS 

    Google Scholar
     

  • Swartzlander G. A. Jr, Peterson, T. J., Artusio-Glimpse, A. B. & Raisanen, A. D. Stable optical lift. Nature Photon. 5, 48–51 (2010).

    ADS 

    Google Scholar
     

  • Simpson, S. H., Hanna, S., Peterson, T. J. & Swartzlander, G. A. Optical lift from dielectric semicylinders. Opt. Lett. 37, 4038–4040 (2012).

    ADS 

    Google Scholar
     

  • Bishop, A. I., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett. 92, 198104 (2004).

    ADS 

    Google Scholar
     

  • Trojek, J., Karasek, V. & Zemanek, P. Extreme axial optical force in a standing wave achieved by optimized object shape. Opt. Express 17, 10472–10488 (2009).

    ADS 

    Google Scholar
     

  • Palima, D. et al. Wave-guided optical waveguides. Opt. Express 20, 2004–2014 (2012).

    ADS 

    Google Scholar
     

  • Nieminen, T. A. et al. Optical tweezers computational toolbox. J. Opt. A 9, S196–S203 (2007).

    ADS 

    Google Scholar
     

  • Bowman, R. W. & Padgett, M. J. Optical trapping and binding. Rep. Prog. Phys. 76, 026401 (2013).

    ADS 

    Google Scholar
     

  • Pfeifer, R. N., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Colloquium: momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 79, 1197 (2007).

    ADS 

    Google Scholar
     

  • Mansuripur, M. & Zakharian, A. R. Radiation pressure on a submerged absorptive partial reflector deduced from the Doppler shift. Phys. Rev. A 86, 013841 (2012).

    ADS 

    Google Scholar
     

  • Brevik, I. Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor. Phys. Rep. 52, 133–201 (1979).

    ADS 

    Google Scholar
     

  • Brevik, I. & Ellingsen, S. Transverse radiation force in a tailored optical fiber. Phys. Rev. A 81, 011806 (2010).

    ADS 

    Google Scholar
     

  • Van Bladel, J. Singular Electromagnetic Fields and Sources (Clarendon, 1991).


    Google Scholar
     

  • Simmons, R. M., Finer, J. T., Chu, S. & Spudich, J. A. Quantitative measurements of force and displacement using an optical trap. Biophys. J. 70, 1813–1822 (1996).

    ADS 

    Google Scholar
     

  • Phillips, D. et al. Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking. J. Opt. 13, 044023 (2011).

    ADS 

    Google Scholar
     

  • Cumpston, B. H. et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999).

    ADS 

    Google Scholar
     

  • Bowman, R., Gibson, G. & Padgett, M. Particle tracking stereomicroscopy in optical tweezers: control of trap shape. Opt. Express 18, 11785–11790 (2010).

    ADS 

    Google Scholar
     

  • Phillips, D. B. et al. An optically actuated surface scanning probe. Opt. Express 20, 29679–29693 (2012).

    ADS 

    Google Scholar
     

  • Wang, F. et al. Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping. Nano Lett. 13, 1185–1191 (2013).

    ADS 

    Google Scholar
     

  • Ghislain, L. P. & Webb, W. W. Scanning-force microscope based on an optical trap. Opt. Lett. 18, 1678–1680 (1993).

    ADS 

    Google Scholar
     

  • Friese, M. E. J., Truscott, A. G., Rubinsztein-Dunlop, H. & Heckenberg, N. R. Three-dimensional imaging with optical tweezers. Appl. Opt. 38, 6597–6603 (1999).

    ADS 

    Google Scholar
     

  • Seitz, P. C., Stelzer, E. H. K. & Rohrbach, A. Interferometric tracking of optically trapped probes behind structured surfaces: a phase correction method. Appl. Opt. 45, 7309–7315 (2006).

    ADS 

    Google Scholar
     

  • Phillips, D. B. et al. Surface imaging using holographic optical tweezers. Nanotechnology 22, 285503 (2011).


    Google Scholar
     

  • Simpson, S. H., Phillips, D. B., Carberry, D. M. & Hanna, S. Bespoke optical springs and passive force clamps from shaped dielectric particles. J. Quant. Spectrosc. Radiat. Transf. 126, 91–98 (2012).

    ADS 

    Google Scholar
     

  • Greenleaf, W. J., Woodside, M. T., Abbondanzieri, E. A. & Block, S. M. Passive all-optical force clamp for high-resolution laser trapping. Phys. Rev. Lett. 95, 208102 (2005).

    ADS 

    Google Scholar
     

  • Palima, D. et al. Optical forces through guided light deflections. Opt. Express 21, 581–593 (2013).

    ADS 

    Google Scholar
     

  • Maragò, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. & Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nature Nanotech. 8, 807–819 (2013).

    ADS 

    Google Scholar
     

  • Mishchenko, M. I., Hovenier, J. W. & Travis, L. D. Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 1999).


    Google Scholar
     

  • Kahnert, F. M. Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transf. 79, 775–824 (2003).

    ADS 

    Google Scholar
     

  • Hafner, C. The Generalized Multipole Technique for Computational Electromagnetics (Artech House, 1990).


    Google Scholar
     

  • Nieminen, T., Rubinsztein-Dunlop, H. & Heckenberg, N. Calculation of the T-matrix: general considerations and application of the point-matching method. J. Quant. Spectrosc. Radiat. Transf. 79, 1019–1029 (2003).

    ADS 

    Google Scholar
     

  • Lock, J. A. & Gouesbet, G. Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams. J. Opt. Soc. Am. A 11, 2503–2515 (1994).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Chen, J., Ng, J., Lin, Z. & Chan, C. Optical pulling force. Nature Photon. 5, 531–534 (2011).

    ADS 

    Google Scholar
     

  • Pfeifer, R. N., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical tweezers and paradoxes in electromagnetism. J. Opt. 13, 044017 (2011).

    ADS 

    Google Scholar
     

  • Carrasco, B. & García de la Torre, J. Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures. Biophys. J. 76, 3044–3057 (1999).


    Google Scholar
     

  • Phillips, D. B. et al. Optical Trapping and Optical Micromanipulation X 8810-80 (SPIE, 2013).


    Google Scholar
     



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here