Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses

0
134


  • Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ferrell, J. E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article 

    Google Scholar
     

  • Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156, 636–638 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Kitano, H. Biological robustness. Nature Rev. Genet. 5, 826–837 (2004).

    Article 

    Google Scholar
     

  • Haus, H. A. Theory of mode locking with a fast saturable absorber. J. Appl. Phys. 46, 3049–3058 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Segev, M., Soljačić, M. & Dudley, J. M. Fractal optics and beyond. Nature Photon. 6, 209–210 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Dudley, J. M., Finot, C., Richardson, D. J. & Millot, G. Self-similarity in ultrafast nonlinear optics. Nature Phys. 3, 597–603 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031 (2000).

    Article 

    Google Scholar
     

  • Sreekanth, K. V., Chua, J. K. & Murukeshan, V. M. Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference. Appl. Opt. 49, 6710–6717 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Whitesides, G. M. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nature Photon. 2, 219–225 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Birnbaum, M. Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36, 3688–3689 (1965).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Temple, P. & Soileau, M. Polarization charge model for laser-induced ripple patterns in dielectric materials. IEEE J. Quantum Electron. 17, 2067–2072 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Sipe, J. E., Young, J. F., Preston, J. S. & van Driel, H. M. Laser-induced periodic surface structure I: theory. Phys. Rev. B 27, 1141–1154 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Bonch-Bruevich, A. M., Libenson, M. N., Makin, V. S. & Trubaev, V. V. Surface electromagnetic waves in optics. Opt. Eng. 31, 718–730 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Sun, Q., Liang, F., Vallée, R. & Chin, S. L. Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses. Opt. Lett. 33, 2713–2715 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Bonse, J., Krüger, J., Höhm, S. & Rosenfeld, A. Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24, 042006 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kalaycioglu, H., Oktem, B., Şenel, Ç., Paltani, P. P. & Ilday, F. Ö. Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier. Opt. Lett. 35, 959–961 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Srituravanich, W., Fang, N., Sun, C., Luo, Q. & Zhang, X. Plasmonic nanolithography. Nano Lett. 4, 1085–1088 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nature Nanotech. 5, 391–400 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photon. 5, 349–356 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Didiot, C., Pons, S., Kierren, B., Fagot-Revurat, Y. & Malterre, D. Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures. Nature Nanotech. 2, 617–621 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Flemming, R. G., Murphy, C. J., Abrams, G. A., Goodman, S. L. & Nealey, P. F. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20, 573–588 (1999).

    Article 

    Google Scholar
     

  • Kang, T.-S., Smith, A. P., Taylor, B. E. & Durstock, M. F. Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett. 9, 601–606 (2009).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here