Passive broadband Faraday isolator for hybrid integration to photonic circuits without lens and external magnet

0
65


  • Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon. 14, 369–374 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Ren, S. Y. et al. Single-photon non-reciprocity with an integrated magneto-optical isolator. Laser Photon. Rev. 16, 2100595 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Okamura, Y., Ishida, M. & Yamamoto, S. Magnetooptic rib waveguides in YIG: an experiment. Appl. Opt. 23, 124–126 (1984).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pross, E., Tolksdorf, W. & Dammann, H. Yttrium iron garnet single-mode buried channel waveguides for waveguide isolators. Appl. Phys. Lett. 52, 682–684 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Wolfe, R., Lieberman, R. A., Fratello, V. J., Scotti, R. E. & Kopylov, N. Etch-tuned ridged waveguide magneto-optic isolator. Appl. Phys. Lett. 56, 426–428 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Mizumoto, T. & Naito, Y. Non-reciprocal propagation characteristics of YIG thin film. IEEE Trans. Microw. Theory Tech. 30, 922–925 (1982).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Okamura, Y., Negami, T. & Yamamoto, S. Integrated optical isolator and circulator using non-reciprocal phase shifters: a proposal. Appl. Opt. 23, 1886–1889 (1984).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Du, Q. et al. Monolithic on-chip magneto-optical isolator with 3 dB insertion loss and 40 dB isolation ratio. ACS Photon. 5, 5010–5016 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Mizumoto, T., Oochi, K., Harada, T. & Naito, Y. Measurement of optical non-reciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator. J. Light. Technol. 4, 347–352 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Bi, L., Hu, J., Dionne, G. F., Kimerling, L. & Ross, C. A. Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip non-reciprocal photonic devices. In Integrated Optics: Devices, Materials, and Technologies XV 7941, 28–37 (SPIE, 2011).

  • Sun, X. Y. et al. Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation. ACS Photon. 2, 856–863 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Zhang, C., Dulal, P., Stadler, B. J. & Hutchings, D. C. Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seedlayer-free garnet. Sci. Rep. 7, 5820 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Mizumoto, T., Baets, R. & Bowers, J. E. Optical non-reciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials. MRS Bull. 43, 419–424 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pintus, P. et al. Broadband TE optical isolators and circulators in silicon photonics through Ce:YIG bonding. J. Light. Technol. 37, 1463–1473 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Shoji, Y. & Mizumoto, T. Silicon waveguide optical isolator with directly bonded magneto-optical garnet. Appl. Sci. 9, 609 (2019).

    Article 

    Google Scholar
     

  • Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I. W. & Osgood, R. M. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 92, 071117 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Huang, D. et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics. IEEE J. Quantum Electron. 22, 271–278 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Stadler, B. J. & Mizumoto, T. Integrated magneto-optical materials and isolators: a review. IEEE Photon. J. 6, 1–15 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Srinivasan, K. & Stadler, B. J. Review of integrated magneto-optical isolators with rare-earth iron garnets for polarization diverse and magnet-free isolation in silicon photonics. Opt. Mater. Express 12, 697–716 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shoji, Y. & Mizumoto, T. Magneto-optical non-reciprocal devices in silicon photonics. Sci. Technol. Adv. Mater. 15, 014602 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Srinivasan, K. & Stadler, B. J. Magneto-optical materials and designs for integrated TE- and TM-mode planar waveguide isolators: a review. Opt. Mater. Express 8, 3307–3318 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Yamaguchi, R., Shoji, Y. & Mizumoto, T. Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input. Opt. Express 26, 21271–21278 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Ghosh, S. et al. Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits. IEEE Photon. J. 5, 6601108–6601108 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 6, 473–478 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Huang, D., Pintus, P. & Bowers, J. E. Towards heterogeneous integration of optical isolators and circulators with lasers on silicon. Opt. Mater. Express 8, 2471–2483 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Yan, W. et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica 7, 1555–1562 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Levy, M. et al. Integrated optical isolators with sputter-deposited thin-film magnets. IEEE Photon. Technol. Lett. 8, 903–905 (1996).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Huang, D. et al. Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range. Opt. Lett. 42, 4901–4904 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Huang, D. et al. Dynamically reconfigurable integrated optical circulators. Optica 4, 23–30 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Kim, S., Sohn, D. B., Peterson, C. W. & Bahl, G. On-chip optical non-reciprocity through a synthetic Hall effect for photons. APL Photon. 6, 011301 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dostart, N., Gevorgyan, H., Onural, D. & Popović, M. A. Optical isolation using microring modulators. Opt. Lett. 46, 460–463 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kim, J. H., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Article 

    Google Scholar
     

  • Kittlaus, E. A., Otterstrom, N. T., Kharel, P., Gertler, S. & Rakich, P. T. Non-reciprocal interband Brillouin modulation. Nat. Photon. 12, 613–619 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photon. 15, 43–52 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sohn, D. B., Örsel, O. E. & Bahl, G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting. Nat. Photon. 15, 822–827 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven non-reciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Sohn, D. B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photon. 12, 91–97 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Tian, H. et al. Magnetic-free silicon nitride integrated optical isolator. Nat. Photon. 15, 828–836 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • White, A. D. et al. Integrated passive nonlinear optical isolators. Nat. Photon. 17, 143–149 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Del Bino, L. et al. Microresonator isolators and circulators based on the intrinsic non-reciprocity of the Kerr effect. Optica 5, 279–282 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Abbott, R. R., Fratello, V. J., Licht, S. J. & Mnushkina, I. Article comprising a Faraday rotator that does not require a bias magnet. US patent 6,770,223 (2004).

  • Karki, D., Stenger, V., Pollick, A. & Levy, M. Thin-film magnetless Faraday rotators for compact heterogeneous integrated optical isolators. J. Appl. Phys. 121, 23 (2017).

    Article 

    Google Scholar
     

  • Karki, D., Stenger, V., Pollick, A. & Levy, M. Broadband bias-magnet-free on-chip optical isolators with integrated thin film polarizers. J. Light. Technol. 38, 827–833 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2, 219–225 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Lapointe, J. et al. Nonlinear increase, invisibility, and sign inversion of a localized fs-laser-induced refractive index change in crystals and glasses. Light Sci. Appl. 9, 64 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fakhrul, T. et al. High figure of merit magneto-optical Ce- and Bi-substituted terbium iron garnet films integrated on Si. Adv. Opt. Mater. 9, 2100512 (2021).

    Article 

    Google Scholar
     

  • Zhou, Z. et al. Prospects and applications of on-chip lasers. eLight 3, 1–25 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Tan, J. Y., Wu, S. X., Salih, Y., Li, C. & Lo, G. Q. Foundry’s perspective on laser and SOA module integration with silicon photonics. J. Light. Technol. 42, 1062 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Magneto-Optic LPE Garnet Faraday Rotator Crystals. https://www.coherent.com/content/dam/coherent/site/en/resources/datasheet/optics/magneto-optic-lpe-garnet-faraday-rotator-crystals-ds.pdf (II-VI Inc., 2023).

  • Shah, L., Arai, A. Y., Eaton, S. M. & Herman, P. R. Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. Opt. Express 13, 1999–2006 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Chambonneau, M. et al. In-volume laser direct writing of silicon—challenges and opportunities. Laser Photon. Rev. 15, 2100140 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chen, F. & de Aldana, J. V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev. 8, 251–275 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lapointe, J. et al. Laser writing of 3D waveguides up to long-wave infrared: sensing and high refractive index contrast challenges. In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVII 11988, 78–93 (SPIE, 2022).

  • Bérubé, J. P., Lapointe, J., Dupont, A., Bernier, M. & Vallée, R. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire. Opt. Lett. 44, 37–40 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dupont, A., Lapointe, J., Pouliot, S. & Vallée, R. From near-UV to long-wave infrared waveguides inscribed in barium fluoride using a femtosecond laser. Opt. Lett. 46, 3925–3928 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Peng, Y. P. et al. Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing. Sci. Rep. 5, 18365 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Caulier, O., Le Coq, D., Bychkov, E. & Masselin, P. Direct laser writing of buried waveguide in As2S3 glass using a helical sample translation. Opt. Lett. 38, 4212–4215 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. J. et al. Double line and tubular depressed cladding waveguides written by femtosecond laser irradiation in PTR glass. Opt. Mater. Express 7, 2626–2635 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Salamu, G., Jipa, F., Zamfirescu, M. & Pavel, N. Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique. Opt. Mater. Express 4, 790–797 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Marcuse, D. Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56, 703–718 (1977).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Santos, S. N. C. D. et al. Femtosecond-laser fabrication of magneto-optical waveguides in terbium doped CaLiBO glass. Opt. Mater. 126, 112197 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Polarcorâ„¢ UltraThinâ„¢ Glass Polarizers Product Information. https://www.corning.com/media/worldwide/csm/documents/Polarcor%E2%84%A2%20Ultrathin%E2%84%A2%20Product%20Information%20Sheet.pdf (Corning Inc., 2005).

  • Kaur, P. et al. Hybrid and heterogeneous photonic integration. APL Photon. 6, 061102 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hélie, D., Gouin, S. & Vallée, R. Assembling an endcap to optical fibers by femtosecond laser welding and milling. Opt. Mater. Express 3, 1742–1754 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lapointe, J., Bérubé, J. P., Dupont, A., Bellec, M. & Vallée, R. Modified astigmatic beam technique for laser writing. Appl. Opt. 61, 2333–2337 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Roberts, A. et al. Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy. Opt. Lett. 27, 2061–2063 (2002).

    Article 
    ADS 
    MATH 

    Google Scholar
     



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here