Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon. 14, 369–374 (2020).
Ren, S. Y. et al. Single-photon non-reciprocity with an integrated magneto-optical isolator. Laser Photon. Rev. 16, 2100595 (2022).
Okamura, Y., Ishida, M. & Yamamoto, S. Magnetooptic rib waveguides in YIG: an experiment. Appl. Opt. 23, 124–126 (1984).
Pross, E., Tolksdorf, W. & Dammann, H. Yttrium iron garnet single-mode buried channel waveguides for waveguide isolators. Appl. Phys. Lett. 52, 682–684 (1988).
Wolfe, R., Lieberman, R. A., Fratello, V. J., Scotti, R. E. & Kopylov, N. Etch-tuned ridged waveguide magneto-optic isolator. Appl. Phys. Lett. 56, 426–428 (1990).
Mizumoto, T. & Naito, Y. Non-reciprocal propagation characteristics of YIG thin film. IEEE Trans. Microw. Theory Tech. 30, 922–925 (1982).
Okamura, Y., Negami, T. & Yamamoto, S. Integrated optical isolator and circulator using non-reciprocal phase shifters: a proposal. Appl. Opt. 23, 1886–1889 (1984).
Du, Q. et al. Monolithic on-chip magneto-optical isolator with 3 dB insertion loss and 40 dB isolation ratio. ACS Photon. 5, 5010–5016 (2018).
Mizumoto, T., Oochi, K., Harada, T. & Naito, Y. Measurement of optical non-reciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator. J. Light. Technol. 4, 347–352 (1986).
Bi, L., Hu, J., Dionne, G. F., Kimerling, L. & Ross, C. A. Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip non-reciprocal photonic devices. In Integrated Optics: Devices, Materials, and Technologies XV 7941, 28–37 (SPIE, 2011).
Sun, X. Y. et al. Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation. ACS Photon. 2, 856–863 (2015).
Zhang, C., Dulal, P., Stadler, B. J. & Hutchings, D. C. Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seedlayer-free garnet. Sci. Rep. 7, 5820 (2017).
Mizumoto, T., Baets, R. & Bowers, J. E. Optical non-reciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials. MRS Bull. 43, 419–424 (2018).
Pintus, P. et al. Broadband TE optical isolators and circulators in silicon photonics through Ce:YIG bonding. J. Light. Technol. 37, 1463–1473 (2019).
Shoji, Y. & Mizumoto, T. Silicon waveguide optical isolator with directly bonded magneto-optical garnet. Appl. Sci. 9, 609 (2019).
Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I. W. & Osgood, R. M. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 92, 071117 (2008).
Huang, D. et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics. IEEE J. Quantum Electron. 22, 271–278 (2016).
Stadler, B. J. & Mizumoto, T. Integrated magneto-optical materials and isolators: a review. IEEE Photon. J. 6, 1–15 (2013).
Srinivasan, K. & Stadler, B. J. Review of integrated magneto-optical isolators with rare-earth iron garnets for polarization diverse and magnet-free isolation in silicon photonics. Opt. Mater. Express 12, 697–716 (2022).
Shoji, Y. & Mizumoto, T. Magneto-optical non-reciprocal devices in silicon photonics. Sci. Technol. Adv. Mater. 15, 014602 (2014).
Srinivasan, K. & Stadler, B. J. Magneto-optical materials and designs for integrated TE- and TM-mode planar waveguide isolators: a review. Opt. Mater. Express 8, 3307–3318 (2018).
Yamaguchi, R., Shoji, Y. & Mizumoto, T. Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input. Opt. Express 26, 21271–21278 (2018).
Ghosh, S. et al. Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits. IEEE Photon. J. 5, 6601108–6601108 (2013).
Zhang, Y. et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 6, 473–478 (2019).
Huang, D., Pintus, P. & Bowers, J. E. Towards heterogeneous integration of optical isolators and circulators with lasers on silicon. Opt. Mater. Express 8, 2471–2483 (2018).
Yan, W. et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica 7, 1555–1562 (2020).
Levy, M. et al. Integrated optical isolators with sputter-deposited thin-film magnets. IEEE Photon. Technol. Lett. 8, 903–905 (1996).
Huang, D. et al. Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range. Opt. Lett. 42, 4901–4904 (2017).
Huang, D. et al. Dynamically reconfigurable integrated optical circulators. Optica 4, 23–30 (2017).
Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).
Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).
Kim, S., Sohn, D. B., Peterson, C. W. & Bahl, G. On-chip optical non-reciprocity through a synthetic Hall effect for photons. APL Photon. 6, 011301 (2021).
Dostart, N., Gevorgyan, H., Onural, D. & Popović, M. A. Optical isolation using microring modulators. Opt. Lett. 46, 460–463 (2021).
Kim, J. H., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).
Kittlaus, E. A., Otterstrom, N. T., Kharel, P., Gertler, S. & Rakich, P. T. Non-reciprocal interband Brillouin modulation. Nat. Photon. 12, 613–619 (2018).
Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photon. 15, 43–52 (2021).
Sohn, D. B., Örsel, O. E. & Bahl, G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting. Nat. Photon. 15, 822–827 (2021).
Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven non-reciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).
Sohn, D. B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photon. 12, 91–97 (2018).
Tian, H. et al. Magnetic-free silicon nitride integrated optical isolator. Nat. Photon. 15, 828–836 (2021).
White, A. D. et al. Integrated passive nonlinear optical isolators. Nat. Photon. 17, 143–149 (2023).
Del Bino, L. et al. Microresonator isolators and circulators based on the intrinsic non-reciprocity of the Kerr effect. Optica 5, 279–282 (2018).
Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).
Abbott, R. R., Fratello, V. J., Licht, S. J. & Mnushkina, I. Article comprising a Faraday rotator that does not require a bias magnet. US patent 6,770,223 (2004).
Karki, D., Stenger, V., Pollick, A. & Levy, M. Thin-film magnetless Faraday rotators for compact heterogeneous integrated optical isolators. J. Appl. Phys. 121, 23 (2017).
Karki, D., Stenger, V., Pollick, A. & Levy, M. Broadband bias-magnet-free on-chip optical isolators with integrated thin film polarizers. J. Light. Technol. 38, 827–833 (2020).
Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2, 219–225 (2008).
Lapointe, J. et al. Nonlinear increase, invisibility, and sign inversion of a localized fs-laser-induced refractive index change in crystals and glasses. Light Sci. Appl. 9, 64 (2020).
Fakhrul, T. et al. High figure of merit magneto-optical Ce- and Bi-substituted terbium iron garnet films integrated on Si. Adv. Opt. Mater. 9, 2100512 (2021).
Zhou, Z. et al. Prospects and applications of on-chip lasers. eLight 3, 1–25 (2023).
Tan, J. Y., Wu, S. X., Salih, Y., Li, C. & Lo, G. Q. Foundry’s perspective on laser and SOA module integration with silicon photonics. J. Light. Technol. 42, 1062 (2023).
Magneto-Optic LPE Garnet Faraday Rotator Crystals. https://www.coherent.com/content/dam/coherent/site/en/resources/datasheet/optics/magneto-optic-lpe-garnet-faraday-rotator-crystals-ds.pdf (II-VI Inc., 2023).
Shah, L., Arai, A. Y., Eaton, S. M. & Herman, P. R. Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. Opt. Express 13, 1999–2006 (2005).
Chambonneau, M. et al. In-volume laser direct writing of silicon—challenges and opportunities. Laser Photon. Rev. 15, 2100140 (2021).
Chen, F. & de Aldana, J. V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev. 8, 251–275 (2014).
Lapointe, J. et al. Laser writing of 3D waveguides up to long-wave infrared: sensing and high refractive index contrast challenges. In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVII 11988, 78–93 (SPIE, 2022).
Bérubé, J. P., Lapointe, J., Dupont, A., Bernier, M. & Vallée, R. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire. Opt. Lett. 44, 37–40 (2019).
Dupont, A., Lapointe, J., Pouliot, S. & Vallée, R. From near-UV to long-wave infrared waveguides inscribed in barium fluoride using a femtosecond laser. Opt. Lett. 46, 3925–3928 (2021).
Peng, Y. P. et al. Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing. Sci. Rep. 5, 18365 (2015).
Caulier, O., Le Coq, D., Bychkov, E. & Masselin, P. Direct laser writing of buried waveguide in As2S3 glass using a helical sample translation. Opt. Lett. 38, 4212–4215 (2013).
Zhang, Y. J. et al. Double line and tubular depressed cladding waveguides written by femtosecond laser irradiation in PTR glass. Opt. Mater. Express 7, 2626–2635 (2017).
Salamu, G., Jipa, F., Zamfirescu, M. & Pavel, N. Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique. Opt. Mater. Express 4, 790–797 (2014).
Marcuse, D. Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56, 703–718 (1977).
Santos, S. N. C. D. et al. Femtosecond-laser fabrication of magneto-optical waveguides in terbium doped CaLiBO glass. Opt. Mater. 126, 112197 (2022).
Polarcorâ„¢ UltraThinâ„¢ Glass Polarizers Product Information. https://www.corning.com/media/worldwide/csm/documents/Polarcor%E2%84%A2%20Ultrathin%E2%84%A2%20Product%20Information%20Sheet.pdf (Corning Inc., 2005).
Kaur, P. et al. Hybrid and heterogeneous photonic integration. APL Photon. 6, 061102 (2021).
Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).
Hélie, D., Gouin, S. & Vallée, R. Assembling an endcap to optical fibers by femtosecond laser welding and milling. Opt. Mater. Express 3, 1742–1754 (2013).
Lapointe, J., Bérubé, J. P., Dupont, A., Bellec, M. & Vallée, R. Modified astigmatic beam technique for laser writing. Appl. Opt. 61, 2333–2337 (2022).
Roberts, A. et al. Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy. Opt. Lett. 27, 2061–2063 (2002).