Two-step absorption instead of two-photon absorption in 3D nanoprinting

0
89


  • Göppert-Mayer, M. Ãœber Elementarakte mit zwei Quantensprüngen. Ann. Phys. 401, 273–294 (1931).

    Article 
    MATH 

    Google Scholar
     

  • Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, 1997).

  • Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Denk, W., Piston, D. W. & Webb, W. W. Multi-photon molecular excitation in laser-scanning microscopy. in Handbook Of Biological Confocal Microscopy (ed. Pawley, J. B.) 535–549 (Springer, 2006).

  • Wu, E.-S., Strickler, J. H., Harrell, W. R. & Webb, W. W. Two-photon lithography for microelectronic application. In Proc. SPIE 1674, Optical/Laser Microlithography V 776–782 (International Society for Optics and Photonics, 1992).

  • Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Baldacchini, T. (ed.) Three-Dimensional Microfabrication Using Two-Photon Polymerization 2nd edn (Elsevier, 2019).

  • Farsari, M. & Chichkov, B. N. Two-photon fabrication. Nat. Photon. 3, 450–452 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Gissibl, T., Thiele, S., Herkommer, A. & Giessen, H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 10, 554–560 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Dietrich, P.-I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photon. 12, 241–247 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wolff, M. A. et al. Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency. Appl. Phys. Lett. 118, 154004 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hahn, V. et al. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials. Adv. Funct. Mater. 30, 1907795 (2020).

    Article 

    Google Scholar
     

  • Skliutas, E. et al. Polymerization mechanisms initiated by spatio-temporally confined light. Nanophotonics 10, 1211–1242 (2021).

    Article 

    Google Scholar
     

  • Kiefer, P. et al. Sensitive photoresists for rapid multiphoton 3D laser micro- and nanoprinting. Adv. Opt. Mater. 8, 2000895 (2020).

    Article 

    Google Scholar
     

  • Schafer, K. J. et al. Two-photon absorption cross-sections of common photoinitiators. J. Photochem. Photobiol. Chem. 162, 497–502 (2004).

    Article 

    Google Scholar
     

  • Pawlicki, M., Collins, H. A., Denning, R. G. & Anderson, H. L. Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 48, 3244–3266 (2009).

    Article 

    Google Scholar
     

  • Mueller, J. B., Fischer, J., Mange, Y. J., Nann, T. & Wegener, M. In-situ local temperature measurement during three-dimensional direct laser writing. Appl. Phys. Lett. 103, 123107 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Fischer, J. et al. Three-dimensional multi-photon direct laser writing with variable repetition rate. Opt. Express 21, 26244–26260 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Dexter, D. L. Possibility of luminescent quantum yields greater than unity. Phys. Rev. 108, 630–633 (1957).

    Article 
    ADS 

    Google Scholar
     

  • Wegh, R. T., Donker, H., Oskam, K. D. & Meijerink, A. Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663–666 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Burnham, D. C. & Weinberg, D. L. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Fischer, J. & Wegener, M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mater. Express 1, 614–624 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Turro, N. J. Modern Molecular Photochemistry (University Science Books, 1991).

  • Flamigni, L., Barigelletti, F., Dellonte, S. & Orlandi, G. Photophysical properties of benzil in solution: triplet state deactivation pathways. J. Photochem. 21, 237–244 (1983).

    Article 

    Google Scholar
     

  • Lamola, A. A. & Hammond, G. S. Mechanisms of photochemical reactions in solution. XXXIII. Intersystem crossing efficiencies. J. Chem. Phys. 43, 2129–2135 (1965).

    Article 
    ADS 

    Google Scholar
     

  • Fang, T.-S., Brown, R. E., Kwan, C. L. & Singer, L. A. Photophysical studies on benzil. Time resolution of the prompt and delayed emissions and a photokinetic study indicating deactivation of the triplet by reversible exciplex formation. J. Phys. Chem. 82, 2489–2496 (1978).

    Article 

    Google Scholar
     

  • Bückmann, T. et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710–2714 (2012).

    Article 

    Google Scholar
     

  • Scaiano, J. C., Johnston, L. J., McGimpsey, W. G. & Weir, D. Photochemistry of organic reaction intermediates: novel reaction paths induced by two-photon laser excitation. Acc. Chem. Res. 21, 22–29 (1988).

    Article 

    Google Scholar
     

  • Cáceres, T., Encinas, M. V. & Lissi, E. A. Photocleavage of benzil. J. Photochem. 27, 109–114 (1984).

    Article 

    Google Scholar
     

  • Grubbs, R. B. Nitroxide-mediated radical polymerization: limitations and versatility. Polym. Rev. 51, 104–137 (2011).

    Article 

    Google Scholar
     

  • Johnston, L. J., Tencer, M. & Scaiano, J. C. Evidence for hydrogen transfer in the photochemistry of 2,2,6,6-tetramethylpiperidine N-oxyl. J. Org. Chem. 51, 2806–2808 (1986).

    Article 

    Google Scholar
     

  • Tatikolov, A. S., Levin, P. P., Kokrashvili, T. A. & Kuz’min, V. A. Quenching of the triplet states of carbonyl compounds by nitroxyl radicals. Russ. Chem. Bull. 32, 465–468 (1983).

  • Bunbury, D. L. & Chuang, T. T. Photolysis of benzil in 2-propanol and in cumene. Can. J. Chem. 47, 2045–2055 (1969).

    Article 

    Google Scholar
     

  • Arnoux, C. et al. Polymerization photoinitiators with near-resonance enhanced two-photon absorption cross-section: toward high-resolution photoresist with improved sensitivity. Macromolecules 53, 9264–9278 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light: Sci. Appl. 5, e16133 (2016).

    Article 

    Google Scholar
     

  • Ikuta, K., Maruo, S. & Kojima, S. New micro stereo lithography for freely movable 3D micro structure-super IH process with submicron resolution. In Proc. MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No. 98CH36176) 290–295 (IEEE, 1998).

  • Thiel, M., Fischer, J., von Freymann, G. & Wegener, M. Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm. Appl. Phys. Lett. 97, 221102 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Do, M. T. et al. Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing. Opt. Express 21, 20964–20973 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Delrot, P., Loterie, D., Psaltis, D. & Moser, C. Single-photon three-dimensional microfabrication through a multimode optical fiber. Opt. Express 26, 1766–1778 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Mueller, P., Thiel, M. & Wegener, M. 3D direct laser writing using a 405 nm diode laser. Opt. Lett. 39, 6847–6850 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 3, eaao5496 (2017).

    Article 

    Google Scholar
     

  • Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).

    Article 

    Google Scholar
     

  • Loterie, D., Delrot, P. & Moser, C. High-resolution tomographic volumetric additive manufacturing. Nat. Commun. 11, 852 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Schumann, M. F. et al. Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes. Optica 2, 850–853 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Urbancová, P. et al. IP-Dip-based woodpile structures for VIS and NIR spectral range: complex PBG analysis. Opt. Mater. Express 9, 4307–4317 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).

    Article 
    ADS 

    Google Scholar
     

  • #3DBenchy. https://www.3dbenchy.com/



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here